
 Page 1

Stereoscopic Metadata Format Specification

Version 1.4

May 23rd, 2012

3dtv.at

Peter Wimmer

Wankmüllerhof. 9

4020 Linz

Austria

http://www.3dtv.at

office@3dtv.at

Introduction

Stereoscopic movies can be encoded in several different formats. In this specification, the term

layout is used for the way left and right views are arranged in video files—opposed to the

general term format, which includes the container format, video and audio codec as well as the

layout. Common layouts are side-by-side, over/under, interlaced, dual stream and separate

left/right files. Information about the layout is usually not present in the file, so the user has to

select the layout when opening the file in order to play it properly.

Although it would be advantageous to embed layout information in the file, it is not possible

with all container formats or without recompressing the file. For these reasons, it makes sense

to provide means to store metadata in separate files.

A specification for stereoscopic Windows Media files and a tool to embed stereoscopic meta-

data into Windows Media files are available on the 3dtv.at web site. It is recommended to

embed stereoscopic metadata directly into Windows Media files and either provide stereo-

scopic metafiles for compatibility reasons only or do not provide them at all. For other

container formats, it is highly recommended to use stereoscopic metafiles according to this

specification.

The stereoscopic metadata format covered by this specification is implemented in Stereoscopic

Player. Besides the layout, the stereoscopic metadata format holds several other bits of infor-

mation about the corresponding video file. The stereoscopic metadata format may be imple-

mented royalty free by other vendors.

Format Overview

The stereoscopic metadata format is a binary format which consists of three blocks.

1. File header

2. List of categories

3. List of video metadata

Because Stereoscopic Player uses the same format to store its video library, it can hold infor-

mation for many files. The stereoscopic metadata format also supports the hierarchical

http://www.3dtv.at/

 Page 2

structure of the video library. Each video belongs to a category, which in turn can be a sub-item

of another category.

Note: Recent versions of the Stereoscopic Player do not display the categories anymore. In the

long term, we plan to replace the categories with tags, where multiple tags can be assigned to

a video. The categories are still shown when the player is running in developer mode. The

developer mode can be enabled by pressing Ctrl+Alt+D while the player’s main window is

active.

A stereoscopic metafile should contain information for a single video file only. It must contain

the video’s category and all its sub-categories. The file extension for stereoscopic metafiles is

*.svi (because metafiles were called stereoscopic video information files in early versions of

Stereoscopic Player).

Detailed Format Description

A stereoscopic metafile start with a signature which allows identifying the file type and

format version. Up to now, four versions have been specified. If a field is not supported in all

format versions, it is mentioned in the description. Stereoscopic metafiles should use the

StereoVideoInfo signature. Stereovideo-Library is reserved for use by Stereo-

scopic Player only.

Field Size Description

Signature 21 or

25 bytes

StereoVideoInfo[V1.0] or

StereoVideoInfo[V1.1] or

StereoVideoInfo[V1.2] or

StereoVideoInfo[V1.3] or

StereoVideoInfo[V1.4] or

Stereovideo-Library[V1.0] or

Stereovideo-Library[V1.1] or

Stereovideo-Library[V1.2] or

Stereovideo-Library[V1.3] or
Stereovideo-Library[V1.4]

Categories 4+X bytes Number of categories, followed by category data (see

Table 2).

Videos 4+X bytes Number of videos, followed by video metadata (see

Table 5). The number of videos should be one for stereo-

scopic metafiles.

Table 1: File header

Important: If the format version is 1.4 or greater, all strings in the category and video

metadata blocks described below are stored in Unicode format (two bytes per character),

otherwise strings are stored in ANSI format.

The signature is followed by category blocks. Each video metadata block must be assigned a

category block which in turn must be assigned a parent category. Only root categories do not

have a parent category. Root categories must not contain videos. Consequently, a stereoscopic

 Page 3

metafiles contains at least two categories: A category the video belongs to and one to the three

root categories (see Table 3). Table 4 lists categories Stereoscopic Player uses for new videos.

When defining your own categories, keep in mind they are identified by their ID—if two

categories share the same name but have a different ID, they will show up as two different

categories in Stereoscopic Player’s video library.

Field Size Description

ID 8 bytes Unique random number, identifying the category

Parent ID 8 bytes ID of parent category or zero for root categories

Last change 8 bytes Date and time in Borland Delphi TDateTime format

Flags 1 byte Bit 1: Category contains at least one video which has

already been opened

Bit 2-7: Unused

Bit 8: Reserved (public category)

In stereoscopic metafiles, the first bit should always be

set to one, the remaining bits should be set to zero.

Title 2+X bytes Length of string, followed by string characters

Extension blocks 2+X bytes Number of extension blocks, followed by extension

blocks. No extensions blocks have been specified for

categories yet. Writers should set this field to zero, read-

ers should skip the specified number of blocks. To skip a

block, read its size and skip the specified number of bytes

(see Table 6). This field is only available in format version

1.1 or better.

Table 2: Category block

Title ID

Files 2810800629978329

DVDs 2810833035958617

URLs 657670585994094975

Devices 655086674328735564

Table 3: Root categories

Title ID Parent ID

New Files 2811666454519930 2810800629978329

New DVDs 2811709215229810 2810833035958617

New URLs 657670632571368574 657670585994094975

Table 4: Other categories

 Page 4

The stereoscopic metadata format supports different kind of media types. Whenever a file or

DVD is opened in Stereoscopic Player, the player searches its video library if the video already

exists. If it does, the information from the library item is used. Else, it looks for a stereoscopic

metafile on the hard disk. If no stereoscopic metafile can be found, it tries to download the

metafile from a web server. If no metafile is available on the server either, Stereoscopic Player

prompts the user to select the layout and aspect ratio.

Searching for stereoscopic metadata requires that the file or DVD can be uniquely identified,

which is possible by using a hash value calculated from the file’s or DVD’s content. Web

streams are identified by their URL, because streamed content is downloaded during playback

and therefore not available when the stream is opened. The field hash is zero in this case.

Many fields in the video metadata block are not required to play back the video properly, but are

used for informal purposes only. For example, they are shown in Stereoscopic Player’s video

library or video properties dialog. Nevertheless, it is strongly recommended to set all values

according to the specification.

Field Size Description

Media type 1 byte 0: File

1: DVD

2: URL

-1: Capture device

-2: Separate files (format version 1.3 or better)

ID 8 bytes Unique random number

Hash 8 bytes Hash value identifying the video file or DVD (media type

1 or 2). Zero for URLs (media type 2). For separate files, the

hash value is made up of the hash value of all files,

including the audio file if audio mode is set to 1. The

exclusive OR operation is used to combine the hash

values.

Category ID 8 bytes ID of category the video belongs to. This must be a valid

category present in the file.

Last change 8 bytes Date and time in Borland Delphi TDateTime format

Title 2+X bytes Length of string, followed by string characters

Video file count 1 byte This field is only present when media type is set to -2. For

separate left and right files, video file count must be set to

two. More than two files are allowed, but ignored by the

current implementation of Stereoscopic Player.

Audio mode 1 byte 0: No audio

1: Separate audio file

2: Use audio stream of left file

3: Use audio stream of right file

This field is only present when media type is set to -2.

Video file names 2+X bytes Length of string, followed by string characters. The string

contains either the file name, DVD path (without

VIDEO_TS) or the URL, depending on the media type.

 Page 5

For stereoscopic metafiles, the file name should be stored

without path, because the metafile must be stored in the

same directory as the video file anyway. The DVD path

should be empty (length of string set to zero, no follow-

ing characters).

If the field video file count is present, at least two file

names must be specified. Files should be ordered from

left to right. Because left and right files might be stored in

different directories, relative paths are allowed in this

case (including ‘../’ to access the parent directory).

Audio file name 2+X bytes Length of string, followed by string characters. This field

is only present when media type is set to -2 and audio mode

is set to 1.

Information 2+X bytes Length of string, followed by string characters

Source 2+X bytes Length of string, followed by string characters

Layout 1 byte 0: Monoscopic

1: Interlaced, right line first

2: Interlaced, left line first

3: Side-by-side, right image first

4: Side-by-side, left image first

5: Over/under, right image top

6: Over/under, left image top

7: Separate streams (media type = 1) or multiple files

(media type = -2), left to right

8 2D and depth

9 Depth and 2D

10 Multi-view (tiled), top to bottom (format version

1.4 or better)

11 Multi-view (tiled), bottom to top (format version

1.4 or better)

12 Frame-sequential, right frame first

13 Frame-sequential, left frame first

14 Multi-view (five tiles), top to bottom (format

version 1.4 or better)

15 Multi-view (five tiles), bottom to top (format

version 1.4 or better)

16 Separate streams, right to left

128 SIS attachment

129 SENSIO Hi-Fi 3D

Separation 2 bytes Distance in pixels between left and right image (for side-

by-side and over/under layout only, else zero).

Horizontal tiles 2 bytes Number of horizontal tiles for layouts 10, 11, 14 and 15,

otherwise the value is not present. The value is ignored

for layouts 14 and 15. Format version 1.4 or better.

 Page 6

Vertical tiles 2 bytes Number of vertical tiles for layouts 10, 11, 14 and 15,

otherwise the value is not present. The value is ignored

for layouts 14 and 15. Format version 1.4 or better.

Left tile 2 bytes Tile to be used as the left view for layouts 10, 11, 14 and

15, otherwise the value is not present. Format version 1.4

or better.

Right tile 2 bytes Tile to be used as the right view for layouts 10, 11, 14 and

15, otherwise the value is not present. Format version 1.4

or better.

Left cropping 2 bytes Left cropping in pixels. Format version 1.1 or better.

Right cropping 2 bytes Right cropping in pixels. Format version 1.1 or better.

Top cropping 2 bytes Top cropping in pixels. Format version 1.1 or better.

Bottom cropping 2 bytes Bottom cropping in pixels. Format version 1.1 or better.

Parallax (horiz.) 2 bytes Horizontal parallax adjustment in pixels. Negative values

are allowed. Format version 1.1 or better.

Parallax (vert.) 2 bytes) Vertical parallax adjustment in pixels. Negative values

are allowed. Format version 1.1 or better.

Aspect ratio X 2 Bytes Either specifies aspect ratio or set to zero for default

aspect ratio (assuming square pixels).

Aspect ratio Y 2 Bytes Either specifies aspect ratio or set to zero for default

aspect ratio (assuming square pixels).

Width 2 Bytes Horizontal video resolution in pixels.

Height 2 Bytes Vertical video resolution in pixels.

File size 8+X Bytes Size of video file or DVD data in bytes. If the field video

file count is present, the size of each file is specified sepa-

rately as well as the size of a separate audio file (if audio

mode is set to 1).

Duration 8 Bytes Video duration in DirectX REFTIME format (seconds in

double precision floating point format).

Flags 1 Byte Bit 1: Half horizontal resolution

Bit 2: Half vertical resolution

Bit 3: Video has already been opened

Bit 4: Metadata have been updated

Bit 5: Deinterlacing on

Bit 6: Left view one field ahead

Bit 7: Right view one field ahead

Bit 8: Deinterlacing auto

Bit 1 and 2 are mutual exclusive and will be ignored if an

aspect ratio has been specified (should both be zero in

this case). If no aspect ratio has been specified, these bits

cause the player to stretch the video to double width or

height, respectively.

Bit 3 is set by Stereoscopic Player once a video has been

opened, so that it is possible to hide sample video library

 Page 7

items which has never been opened.

Bit 4 is used by the Stereoscopic Player video library to

identify items which have not been updated with infor-

mation from a metadata server yet.

Bit 5 should be set for files which require deinterlacing).

Bit 8 should be set if the player should automatically

decide is deinterlacing is required. Bits 5 and 8 are

mutually exclusive.

Bits 6 and 7 are mutually exclusive. If left and right image

have been captured at the same time, none of the bits

should be set.

Bits 3-4 should be set zero for stereoscopic metafiles.

Rotation flags 1 byte Bit 1: Left image rotated left

Bit 2: Left image rotated right

Bit 3: Right image rotated left

Bit 4: Right image rotated right

Bit 4-8: Reserved.

Bits 1 and 2 as well as bits 3 and 4 are mutual exclusive. If

left rotation bit is set, a right rotation bit must be set as

well. Note that left image rotated left means the left image

will be rotated right during playback to compensate the

left rotation in the file. This field is only available in for-

mat version 1.2 or better.

JPEG image 4+X bytes Size of embedded JPEG preview image (160 x 120 pixels,

max. 10240 bytes), followed by image data.

Extension blocks 2+X bytes Number of extension blocks followed by extensions

blocks. Only one extension block has been specified yet

(see Table 7). Writers should either set this field to one

and write the extensions block or set it to zero. Readers

should skip all unknown blocks. To skip a block, read its

size and skip the specified number of bytes (see Table 6).

This field is only available in format version 1.1 or better.

Table 5: Video metadata block

Starting with format version 1.1, category blocks and video metadata blocks may include

extension blocks which allow extending the stereoscopic metadata format without introducing

incompatibilities with previous versions. Readers can skip extension block without knowing

the meaning of their content.

Field Size Description

ID 2 bytes Extension block ID

Size 2 bytes Extension block data size

Data X bytes Data

 Page 8

Table 6: Extension block

Field Size Description

Author 2+X bytes Length of string, followed by string characters

Copyright 2+X bytes Length of string, followed by string characters

Table 7: Video metadata extension block 0

Calculating Hash Values

Video files are identified by a 64 bit hash value, which is derived from 117 bytes of the file

content, using the exclusive OR operation. Each time two bytes have been processed, the

resulting value is shifted left by one bit. Although last shifting operation is unnecessary and

causes the loss of one bit, the algorithm cannot be changed anymore because of compatibility

reasons. The following sample code shows a possible implementation of the hash algorithm.

Delphi implementation:

function GetFileHash(Filename: String): Int64;

var

 i: Integer;

 FileStream: TFileStream;

 NextByte: Byte;

begin

 Result := 0;

 try

 FileStream := TFileStream.Create(Filename, fmOpenRead);

 except

 Exit;

 end;

 for i := 1 to 57 do begin

 FileStream.Position := (FileStream.Size-1) * (2*i-1) div (2*57);

 FileStream.ReadBuffer(NextByte, SizeOf(NextByte));

 Result := Result xor NextByte;

 FileStream.Position := (FileStream.Size-1) * i div 57;

 FileStream.ReadBuffer(NextByte, SizeOf(NextByte));

 Result := Result xor NextByte;

 Result := Result shl 1;

 end;

 FileStream.Free;

end;

C# implementation:

public static long GetFileHash(string filename) {

 FileStream fileStream = null;

 try {

 Page 9

 fileStream = new FileStream(filename, FileMode.Open, FileAccess.Read,

 FileShare.Read);

 long result = 0;

 for (int i = 1; i <= 57; i++) {

 fileStream.Position = (fileStream.Length-1) * (2*i-1) / (2*57);

 int nextByte = fileStream.ReadByte();

 result = result ^ nextByte;

 fileStream.Position = (fileStream.Length-1) * i / 57;

 nextByte = fileStream.ReadByte();

 result = result ^ nextByte;

 result = result << 1;

 }

 return result;

 } catch {

 return 0;

 } finally {

 if (fileStream != null) {

 fileStream.Close();

 }

 }

}

The absolute value of the hash value is used as file name for metadata server files (stereo-

scopic metafiles located on a web server).

To identify DVDs, only the file VIDEO_TS.IFO is used. Taking all files into in the VIDEO_TS

folder account would take too long, because the access time of DVD drives is quite bad. The

file is read in 64 bits block and the exclusive OR operation is applied.

Delphi implementation:

function GetDVDHash(Folder: String): Int64;

var

 i: Integer;

 FileStream: TFileStream;

 NextValue: Int64;

begin

 Result := 0;

 try

 FileStream := TFileStream.Create(Folder+'\VIDEO_TS\VIDEO_TS.IFO',

 fmOpenRead);

 except

 Exit;

 end;

 for i := 1 to FileStream.Size div SizeOf(NextValue) do begin

 FileStream.ReadBuffer(NextValue, SizeOf(NextValue));

 Result := Result xor NextValue;

 end;

 FileStream.Free;

end;

 Page 10

C# implementation:

public static long GetDVDHash(string folder) {

 FileStream fileStream = null;

 try {

 fileStream = new FileStream(folder + "\\VIDEO_TS.IFO", FileMode.Open,

 FileAccess.Read, FileShare.Read);

 BinaryReader reader = new BinaryReader(fileStream);

 long result = 0;

 for (int i = 1; i <= fileStream.Length / 8; i++) {

 long nextValue = reader.ReadInt64();

 result = result ^ nextValue;

 }

 return result;

 } catch {

 return 0;

 } finally {

 if (fileStream != null) {

 fileStream.Close();

 }

 }

}

Date and Time Format

The last change fields in the video metadata block and category block are encoded in Borland

Delphi’s TDateTime format. TDateTime maps to a floating point value at double precision.

The integral part of a Delphi TDateTime value is the number of days that have passed since

12/30/1899. The fractional part of the TDateTime value is fraction of a 24 hour day that has

elapsed. Following are some examples of TDateTime values and their corresponding dates

and times (taken from the Borland Delphi documentation):

Value Date and Time

0 12/30/1899 12:00 am

2.75 1/1/1900 6:00 pm

-1.25 12/29/1899 6:00 am

35065 1/1/1996 12:00 am

Table 8: Sample TDateTime values

Whereas conversion of time to the fractional part of TDateTime is a straightforward task,

date conversion is not. For this reason, here are code samples which show how to do the

conversion on the Windows platform.

C++ implementation:

// Return today's date in Borland Delphi compatible format.

static int Date() {

 SYSTEMTIME sSystemTime;

 GetLocalTime(&sSystemTime);

 int iDate;

 EncodeDate(sSystemTime.wYear, sSystemTime.wMonth, sSystemTime.wDay,

 &iDate);

 return iDate;

 Page 11

}

// Encode a date the same way as Borland Delphi does.

static bool EncodeDate(WORD wYear, WORD wMonth, WORD wDay, int *pDate) {

 const int iMonthDays[2][12] = {

 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},

 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

 };

 int iLeapYear = IsLeapYear(wYear) ? 1 : 0;

 if (wYear >= 1 && wYear <= 9999 &&

 wMonth >= 1 && wMonth <= 12 &&

 wDay >= 1 && wDay <= iMonthDays[iLeapYear][wMonth]) {

 for (int i = 0; i < wMonth - 1; i++) {

 wDay += iMonthDays[iLeapYear][i];

 }

 int iTemp = wYear - 1;

 *pDate = iTemp * 365 + iTemp / 4 - iTemp / 100 + iTemp / 400 + wDay –

 693594;

 return true;

 }

 return false;

}

// Is specified year a leap year?

static bool IsLeapYear(WORD wYear) {

 return (wYear % 4) == 0 && ((wYear % 100) != 0 || (wYear % 400) == 0);

}

C# implementation:

public static class DelphiDate {

 // Return today's date in Borland Delphi compatible format.

 public static int Date() {

 DateTime date = DateTime.Now;

 return ConvertDate(date);

 }

 // Convert .Net to Delphi date.

 public static int ConvertDate(DateTime date) {

 return EncodeDate(date.Year, date.Month, date.Day);

 }

 // Convert .Net to Delphi date/time.

 public static double ConvertDateTime(DateTime date) {

 return EncodeDate(date.Year, date.Month, date.Day) + (date – new

 DateTime(date.Year, date.Month, date.Day)).TotalDays;

 }

 // Convert Delphi to .Net date.

 public static DateTime ConvertDate(int delphiDate) {

 int year, month, day;

 DecodeDate(delphiDate, out year, out month, out day);

 return new DateTime(year, month, day);

 Page 12

 }

 // Convert Delphi to .Net date/time.

 public static DateTime ConvertDateTime(double delphiDateTime) {

 int year, month, day;

 DecodeDate((int)delphiDateTime, out year, out month, out day);

 return new DateTime(year, month, day) +

 TimeSpan.FromDays(delphiDateTime - (int)delphiDateTime);

 }

 // Encode a date the same way as Borland Delphi does.

 public static bool EncodeDate(int year, int month, int day,

 out int date) {

 UInt16[,] monthDays = {

 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},

 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

 };

 int leapYear = IsLeapYear(year) ? 1 : 0;

 if (year >= 1 && year <= 9999 &&

 month >= 1 && month <= 12 &&

 day >= 1 && day <= monthDays[leapYear, month-1]) {

 for (int i = 0; i < month - 1; i++) {

 day = day + monthDays[leapYear, i];

 }

 int temp = year - 1;

 date = temp * 365 + temp / 4 - temp / 100 + temp / 400 +

 day - 693594;

 return true;

 }

 date = 0;

 return false;

 }

 // Another version for convenience.

 public static int EncodeDate(int year, int month, int day) {

 int delphiDate;

 EncodeDate(year, month, day, out delphiDate);

 return delphiDate;

 }

 // Helper method for modulo division.

 private static void DivMod(int dividend, ushort divisor,

 out int result, out int remainder) {

 result = dividend / divisor;

 remainder = dividend % divisor;

 }

 // Decode a Delphi date to year, month and day.

 public static bool DecodeDate(int delphiDate, out int year,

 out int month, out int day) {

 UInt16[,] monthDays = {

 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},

 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

 };

 Page 13

 const int d1 = 365;

 const int d4 = d1 * 4 + 1;

 const int d100 = d4 * 25 - 1;

 const int d400 = d100 * 4 + 1;

 int y, m, d, i;

 delphiDate += 693594; // Days between 1/1/0001 and 12/31/1899;

 if (delphiDate <= 0) {

 year = 0;

 month = 0;

 day = 0;

 return false;

 } else {

 delphiDate--;

 y = 1;

 while (delphiDate >= d400) {

 delphiDate -= d400;

 y += 400;

 }

 DivMod(delphiDate, d100, out i, out d);

 if (i == 4) {

 i--;

 d += d100;

 }

 y += (i * 100);

 DivMod(d, d4, out i, out d);

 y += (i * 4);

 DivMod(d, d1, out i, out d);

 if (i == 4) {

 i--;

 d += d1;

 }

 y += i;

 int leapYear = IsLeapYear(y) ? 1 : 0;

 m = 1;

 while (true) {

 i = monthDays[leapYear, m-1];

 if (d < i)

 break;

 d -= i;

 m++;

 }

 year = y;

 month = m;

 day = d + 1;

 return true;

 }

 }

 // Is specified year a leap year?

 public static bool IsLeapYear(int year) {

 return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0);

 }

}

